First, we load the package phylosignal
and the dataset
carnivora
from adephylo
.
Here is a phylogenetic tree of 19 carnivora species.
And we create a dataframe of 3 traits for the 19 carnivora species.
dat <- list()
dat$mass <- carni19$bm
dat$random <- rnorm(19, sd = 10)
dat$bm <- rTraitCont(tre)
dat <- as.data.frame(dat)
We can combine phylogeny and traits into a phylo4d
object.
## $stat
## Cmean I K K.star Lambda
## mass 0.5493887 0.39210678 0.7127747 0.7154914 9.640762e-01
## random -0.1002857 -0.08204386 0.1240825 0.1260503 6.846792e-05
## bm 0.5958753 0.43599448 0.6642461 0.6535234 9.749701e-01
##
## $pvalue
## Cmean I K K.star Lambda
## mass 0.001 0.002 0.002 0.001 0.001
## random 0.617 0.553 0.535 0.524 1.000
## bm 0.001 0.001 0.001 0.001 0.001
mass.crlg <- phyloCorrelogram(p4d, trait = "mass")
random.crlg <- phyloCorrelogram(p4d, trait = "random")
bm.crlg <- phyloCorrelogram(p4d, trait = "bm")
plot(mass.crlg)
carni.lipa <- lipaMoran(p4d)
carni.lipa.p4d <- lipaMoran(p4d, as.p4d = TRUE)
barplot.phylo4d(p4d, bar.col=(carni.lipa$p.value < 0.05) + 1, center = FALSE , scale = FALSE)
barplot.phylo4d(carni.lipa.p4d, bar.col = (carni.lipa$p.value < 0.05) + 1, center = FALSE, scale = FALSE)